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In� uence of Yaw Cards on the Yaw Growth
of Spin-Stabilized Projectiles

G. R. Cooper¤

U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066

A simple extension of the standard linear theory, describing the free-� ight motion of a projectile, now includes
the in� uences due to the projectile impacting yaw cards. The card impacts are modeled as ideal delta function
impulses that are shown to alter the usual yawing motion of a spin-stabilized projectile passing through a yaw card
range. Card-induced changes in the complex-valued yaw modes are expressed as difference equations. Known
analytic solutions to these difference equations show how card impacts in� uence a projectile’s yawing motion by
relating simple expressions of the card spacing to a parameter describing the material density of the yaw cards.
These solutions also reveal that both bounded and unbounded yaw mode magnitudes can be induced by yaw card
impacts. Furthermore, the model shows that moments caused by repeated projectile and card interactions should
not always be treated as negligible.Examples of these results for a typical small arms projectile (7.62 mm) launched
from an unworn gun tube are presented.

Nomenclature
A = reference area, ¼d2=4
CM®

= aerodynamic moment overturning coef� cient
CM®c = overturning moment coef� cient for card material
d = projectile reference diameter
dc = nondimensionalcard spacing when cards

are uniformly spaced
g = card stability constant, ¹ sin.° =2/ C cos.° =2/
Ic = nondimensionalcard overturning impulse,

.½c Ad 2¿cCM®/=.2Iy/
Ix = axial moment of inertia
Iy = transversemoment of inertia
i =

p
¡1

j = card index value, 0, 1, 2, : : :
NKm; j = average mode magnitude

K1; j = fast yaw mode magnitude before transiting the j th
card

K2; j = slow yaw mode magnitude before transiting the j th
card

M = nondimensionalizedoverturning moment,
.½ Ad 3CM® /=.2Iy/

Mc = nondimensionalizedcard overturning moment,
.½c Ad 3CM®c /=.2Iy/

m = mode number, 1 or 2
Pm = projectile mass
N = maximum number of cards
P = .Ix pd/=.Iy V /
p = axial spin rate
q = real number
Sg = gyroscopic stability factor
S j C 1 = phase value for j th C 1 card, .Á0

1 ¡ Á 0
2/s j

s = nondimensional trajectory arc length (calibers), that is,
V t=d

s j = s at j th card
t = time
V = magnitude of velocity
Z = set of integers
Z e = set of even integers
Z o = set of odd integers
® = angle of attack
¯ = angle of sideslip
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[®; ¯]¨ = ®¯¤ ¨ ®¤¯ commutator and anticommutator
° = phase interval between uniformly spaced cards,

S j C 1 ¡ S j

1K = modal magnitude change
1Á = epicyclical phase jump
·1; j = complex amplitude of fast mode, K1; j exp.iÁ1; j /
·2; j = complex amplitude of slow mode, K2; j exp.iÁ2; j /
¹ = impact stability parameter, Ic=.Á0

1 ¡ Á0
2/1

» = complex yaw, sin ¯ C i sin ®
½ = air density
½c = card material density
¿c = card thickness
8 j C 1 = phase encounter angle
OÁ j = .Á1; j ¡ Á2; j /
Á1; j = fast mode phase angle, between j ¡ 1 and j th card
Á2; j = slow mode phase angle, between j ¡ 1 and j th card
Á 0

1 = fast mode angular rate
Á 0

2 = slow mode angular rate
0 = d( )/ds
* = complex conjugate
jj = absolute value jx C iyj D

p
.x2 C y2)

Introduction

Y AW cardarraysplacedin a � ring rangehavebeenused to obtain
� ight data when spark ranges are not available or when spark

range operations are possibly compromised. A projectile impacting
a yaw card produces an elongated hole depicting the silhouette of
this projectile normal to the line of � re. Comparing the dimensions
of this hole to the dimensions of the projectile plus measuring the
holeorientation,relativeto some � xedaxis,enablesone to determine
the pitch and yaw angles of this projectile at that card’s location.
The interactions of the projectile with yaw cards cause the reduced
� ight coef� cients to differ from the values found from nonintru-
sive photographic measurements taken in a spark range. McCoy1

addressed this problem using Fourier analysis along with an aver-
aging procedure to account for these discrepancies.His conclusion
was that the small perturbationsgenerated by yaw card interactions
gave an additionalaveragephase shift to the usual projectileyawing
motion. The projectile � ight data were then corrected to account for
this phase shift.

Cooper and Fansler2 modeled the projectile and card interaction
using Dirac delta functions.This approacheliminated the averaging
technique.They calculated the fast and slow mode changes in mag-
nitude,as well as the correspondingphasechangesat each card.Be-
causethematerialsused in manufacturingyaw cards are densewhen
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compared to air density, it is reasonable to expect that suf� ciently
decreasingyaw card spacingor using thickyaw cardsmight result in
projectiledestabilization.In particular,marginally stable projectiles
would require careful design of the range to avoid inducing insta-
bility. McCoy1 asserted that the usual stability criterion, extended
with his correction due to yaw cards, was still valid. Cooper and
Fansler2 validated this assertion,provided that a stability parameter
arising from yaw card interaction is assumed small.

The currentapproachis an analyticalcontinuationof thecomputer
simulationsgivenby Cooper and Fansler.2 As before, interactionsof
the projectilewith yaw cards are treatedas ideal impulses.However,
in the present study, both uniform and nonuniform card spacing are
examined. This approach produces � rst- and second-order differ-
ence equations with known solutions. These closed-form solutions
yield an additional stability criterion for projectiles � ying through
a uniformly spaced yaw card range. Both stable and unstable yaw
modes are examined, and closed-form expressions for modal mag-
nitudes, plus the correspondingphase angles, are given as functions
of the number of yaw cards. These analytical results also explain
the computer simulated results given previously.2

Governing Equation of Motion
The differential equation of pitching and yawing motion for a

spinning projectile, acted on by a linear pitching moment and with
damping processes neglected, is, in Murphy’s3 notation,

» 00 ¡ i P» 0 ¡ M» D 0 (1)

Solutions to Eq. (1) are written according to Murphy3 as epicyclic
motion

³ D K1 exp.iÁ1 C iÁ 0
1s/ C K2 exp.iÁ2 C iÁ 0

2s/

Á0
m D

¡
P §

p
P2 ¡ 4M

¢¯
2; m D 1; 2

where K1 and K2 are magnitudes of the two modes with initial
phases Á1 and Á2 having angular rates Á0

1 and Á0
2. Because Eq. (1)

is the equation of motion of a projectile � ying through air, modi-
� cations must be introduced to account for the denser yaw cards.
Following Cooper and Fansler,2 a nondimensionalcard-overturning
moment Mc along with the correspondingimpulse Ic are de� ned as

MC D
¡
½c Ad 3

¯
2Iy

¢
CMac; Ic D

¡
½c Ad 2¿c

¯
2Iy

¢
CMac (2)

for the card material density ½c .
Equation (1) will now be modi� ed to account for the yaw card

interactions.We will assume that each yaw card transmits an over-
turning moment to the projectile. This moment is modeled as an
ideal Dirac delta function impulse, ±.s ¡ s j /, located at the j th card
with position s j . Using the pitching moment impulse Ic, we replace
M with

M C Ic

nX

j D 1

±.s ¡ s j /

changing the governing Eq. (1) to

» 00 ¡ i P» 0 ¡

"
M C Ic

nX

j D 1

±.s ¡ s j /

#

» D 0 (3)

The modal solution of Eq. (3) between the j th and j th C 1 cards
can be written by extending Murphy’s notation3

³ D K1; j exp.iÁ1; j C iÁ 0
1s/ C K2; j exp.iÁ2; j C iÁ0

2s/

j D 0; 1; : : : ; N

Á0
m D

¡
P §

p
P2 ¡ 4M

¢¯
2; m D 1; 2 (4)

where K1; j and K2; j are the card-modi�ed fast and slow modal
magnitudes having Á1; j and Á2; j as card-modi� ed fast and slow
initial phase angles. The respective phase angular rates Á0

1 and Á 0
2

are unchangedby the projectileand card interaction.Note that j D 0

means that the projectile has not reached the � rst yaw card and that
Eqs. (4) describe the usual epicycloid motion associated with free-
� ight projectilesmoving between adjacent cards.

For convenience, the modes are written in polar form as

·m; j D Km; j e
iÁm; j ; m D 1; 2; j D 0; 1; 2; : : : ; N (5)

transforming the � rst equation in Eqs. (4) to

» D ·1; j e
iÁ 0

1
s C ·2; j e

iÁ 0
2
s (6)

Boundary conditions at each card for Eq. (3) are given by

».s jC/ D ».s j /; » 0.s jC/ ¡ » 0.s j / D Ic».s j / (7)

that show the usual discontinuousderivative caused by delta funct-
ions.

Modal Parameters Before and After
a Single Card Interaction

Here we will examine single card impacts that may or may not
requireuniformyaw cardspacing.The followingsectionwill takeup
the discussion where the cards are constrained to uniform spacing.
Considera projectileimpactingthe j th C 1 card.SubstitutingEq. (6)
into Eqs. (7), then solving for ·1; j C 1 and ·2; j C 1 in terms of ·1; j and
·2; j , results in a coupled system of difference equations for the
complex valued ·1; j and ·2; j

·1; j C 1 D ·1; j ¡ i¹·1; j ¡ i¹·2; j e
¡i S j C 1

·2; j C 1 D ·2; j C i¹·2; j C i¹·1; j e
i S j C 1 (8)

De� ning the parameters ¹ and S j as2

¹ D Ic=.Á 0
1 ¡ Á 0

2/ D Ic

¯p
P2 ¡ 4M

S j D .Á 0
1 ¡ Á 0

2/s j D
p

P2 ¡ 4Ms j (9)

and manipulating Eqs. (8), using the usual trigonometric reduction
formulas, shows that the modal magnitudes before and after a card
impact are related as
­­­­
Km; j C 1

Km; j

­­­­
2

¡ 1 D ¡2¹
K3 ¡ m ; j

Km ; j
sin.8 j C 1/ C ¹2

"

1 C
³

K3 ¡ m; j

Km; j

2́

C 2
K3 ¡ m ; j

Km ; j
cos.8 j C 1/

#

; m D 1; 2

8 j C 1 D S j C 1 C OÁ j ; OÁ j D Á1; j ¡ Á2; j (10)

Here we introduce the angle 8 j C 1 , which is called the
phase encounter angle at the j th C 1 yaw card. Applying
[·m; j C 1; ·m ; j ]¡=[·m; j C 1; ·m ; j ]C to Eqs. (8), rewritten in polar form,
yields an expression for the changes in the modal phase angles
Ám; j C 1 ¡ Ám ; j ; m D 1; 2, caused by the projectile impacting the
j th C 1 card:

tan.Ám; j C 1 ¡ Ám; j / D .¡1/m C 1 [K3 ¡ m; j cos.8 j C 1/ C Km; j ]¹

K3 ¡ m ; j sin.8 j C 1/¹ ¡ Km ; j

m D 1; 2 (11)

Subtracting the two modal equations found in Eqs. (10) leads to an
invariant relation for the two modes:

K 2
1; j C 1 ¡ K 2

2; j C 1 D K 2
1; j ¡ K 2

2; j

or

K 2
1; j ¡ K 2

2; j D K 2
1;0 ¡ K 2

2;0

showing that the modal magnitudes lie along a hyperbola.
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Fig. 1 Normalized phase change and normalized modal magnitude.

We de� ne the epicyclical phase jump 1Á and the modal magni-
tude change 1K , attributable to a single impact at the j th C 1 card,
as

1Á D Ám ; j C 1 ¡ Ám; j ; 1K D jKm; j C 1=Km ; j j ¡ 1

for m D 1; 2; j D 0; 1; 2; : : : ; N (12)

Whenever K1; j D K2; j , Eq. (11) tells us that Á1; j C 1 ¡ Á1; j C
Á2; j C 1 ¡ Á2; j D n¼; n 2 Z . Because ¹ is usually small, physi-
cal arguments demand that Ám ; j C 1 ¡ Ám; j ! 0 as ¹ ! 0 for both
m D 1; 2. We, therefore, see that the changes in the two modal
phase angles are centered about n¼ , so that Á1; j C 1 ¡ Á1; j !
¡.Á2; j C 1 ¡ Á2; j / C n¼ . Experience has shown that most often
n D 0, which means that the two modes are rotated equally but in
opposite directions. Figure 1 shows 1Á and 1K , each normalized
by their respective peak values, for a case wherein the two modal
magnitudes are equal

1Á

1Ápeak

D tan¡1f[¹ cos.8 j C 1/ C ¹]=[¹ sin.8 j C 1/ ¡ 1]g
tan¡1[2¹=.¹2 ¡ 1/]

1K

1Kpeak
D

¹ ¡
p

¹2 C 1 sin
£
8 j C 1 ¡ tan¡1.¹/

¤
£
¹ signum.8 j C 1 ¡ ¼/ C

p
¹2 C 1

¤

as functions of 8 j C 1 .
Using the � rst equation of Eqs. (10), we now � nd the ex-

treme values for maximum growth and maximum decay for the
cases where the gun bore is assumed to be unworn, that is, the
modes have equal magnitudes.Straightforwardanalysis tells us that
cos[8 j C 1 ¡ tan¡1.¹/] D 0. Now, solving for the phase encounter
angle 8 j C 1, we � nd that 8 j C 1 D tan¡1.¹/ § .n¼/=2; n 2 Zo . Sub-
stituting this value of 8 j C 1 back into the � rst of Eqs. (10), for both
m D 1, 2, followed by some simpli� cation, gives us

.Km ; j C 1=Km; j/
2 ¡ 1 D §2¹

p
¹2 C 1 C 2¹2 for K1;0 D K2;0

This last expression is a � rst-order linear difference equation that
is easily solved fKm ; j D [¹ §

p
.¹2 C 1/] j Km;0g to produce the

maximum growth and decay rates shown in Fig. 2. The cor-
responding phase changes come from Eq. (11) and reveal that
tan.Ám ; j C 1 ¡ Ám; j / D .¡1/m ¹ for m D 1, 2. This can be solved for
Ám; j C 1 so that one will � nd that OÁ j D OÁ0 C jftan¡1[2¹=.¹2 ¡ 1/] C
On¼g, On 2 Z . Because we already have the corresponding values of
8 j C 1 , we can use the secondequationofEqs. (10) to � nd the needed
card phase value S j C 1 j D 0, 1, 2, : : : by remembering that S1 is the
phase value of the � rst yaw card. Notice that if n and On are constant,
then the card spacing is uniform.

A similar analysis for both modes equal in magnitude so
that 1K D 0 leads to sin[8 j C 1 ¡ tan¡1.¹/] D ¹=

p
.¹2 C 1/. Now,

solving for 8 j C 1 , we � nd that

8 j C 1 D ¡2 cot¡1.¹/ § ¼n; m D 1; 2; n 2 Z o

Placing this result into Eq. (11) tells us that

OÁ j D OÁ0 C j ftan¡1[4¹.¹2 ¡ 1/=.¹4 ¡ 6¹2 C 1/] C On¼g; On 2 Z

Fig. 2 Growth and decay of Km; j/Km;0 as functions of card number.

As before, we can � nd the card spacing S j C 1 j D 0; 1; 2; : : : ; and,
once again, if n and On are constant, then the card spacing is uni-
form. For completion,also note that 1K D 0 whenever 8 j C 1 D n¼ ,
n 2 Z o , implying that Ám ; j C 1 ¡ Ám; j D n¼; n 2 Z for any value of ¹
when m D 1, 2 and j D 0; 1, 2, : : :.

Difference Equations for Uniform Yaw Card Spacing
Yaw card rangesusuallycomprisea seriesof equallyspacedcards

to facilitate extractionof the projectile’s � ight coef� cients. For this
situation,we rewrite the coupledEqs. (8) as uncoupledsecond-order
difference equations:

·1; j C 2 ¡ 2ge¡i° =2·1; j C 1 C e¡i° ·1; j D 0

·2; j C 2 ¡ 2gei° =2·2; j C 1 C ei° ·2; j D 0

° D S j C 1 ¡ S j

g D ¹ sin.° =2/ C cos.° =2/ (13)

Introducing ·m; j D Qm; j .ei.¡1/m ° =2/ j ; m D 1; 2 and j D 0; 1, 2,
: : : ; N transforms Eqs. (13) to

Qm ; j C 2 ¡ 2g Qm ; j C 1 C Qm; j D 0; m D 1; 2 (14)

in which g is de� ned as

g D cos.µ/ for jgj < 1

g D cosh.µ/ for g ¸ 1

g D ¡cosh.µ/ for g · ¡1 (15)

Using the identities

cos[µ.q C 2/] D 2 cos.µ/ cos[µ.q C 1/] ¡ cos.qµ/

sin[µ.q C 2/] D 2 cos.µ/ sin[µ .q C 1/] ¡ sin.qµ/

for any real q , one can � nd solutions to Eq. (14) for jgj · 1.
Including the initial conditions ·m ;0 and ·m ;1 D ·m ;0[.¡1/m i¹ C
1] C .¡1/m i·3 ¡ m ;0 for m D 1; 2, the two complex-valued modal
amplitudes described by Eqs. (13) are readily obtained

·1; j D exp[¡i° . j ¡ 1/=2]

sin.µ/

©£
·1;0.1 ¡ i¹/ ¡ i¹·2;0e

¡i S1
¤

sin. jµ/

¡ ·1;0e¡i° =2 sin[. j ¡ 1/µ ]
ª

·2; j D exp[i° . j ¡ 1/=2]
sin.µ/

©£
·2;0.1 C i¹/ C i¹·1;0ei S1

¤
sin. jµ/

¡ ·2;0ei° =2 sin[. j ¡ 1/µ ]
ª

(16)

The correspondingsolutions for g ¸ 1 can be obtainedby µ ! iµ in
Eqs. (16). Solutions for g · ¡1 are found by multiplying the right-
hand sides of Eqs. (16) by .¡1/ j and then replacing sin. jµ / with
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¡sin. jµ/ followed by µ ! iµ . Manipulating Eqs. (16) for the two
modal magnitudes, one will get
³

Km; j

Km ;0

´2

¡ 1 D

sin. jµ / sin[. j C 1/µ ]cmC sin2. jµ/dm C sin2[. j ¡ 1/µ ] ¡ sin2.µ/

sin2.µ /

cm D 2

µ
K3 ¡ m ;0

Km;0
¹ sin.° =2 ¡ 81/ C cos.µ/

¶

dm D ¡
µ

2K3 ¡ m ;0

Km;0
¹[sin.81/ ¡ ¹ cos.81/]

¡
K 2

3 ¡ m;0

K 2
m;0

¹2 ¡ .¹2 C 1/

¶
(17)

where m D 1 or 2, j D 0, 1, 2, : : : ; N and 81 D S1 C Á1;0 ¡ Á2;0 .
Equivalently, the modal magnitudes when g ¸ 1 yields

³
Km ; j

Km;0

´2

¡ 1 D sinh. jµ/ sinh[. jC1/µ ]cm C sinh2. jµ/dm C sinh2[. j¡1/µ ]¡ sinh2.µ/

sinh2.µ /

cm D 2

µ
K3 ¡ m ;0

Km ;0
¹ sin.° =2 ¡ 81/ C cosh.µ /

¶

dm D ¡
µ

2K3 ¡ m ;0

Km;0
¹[sin.81/ ¡ ¹ cos.81/] ¡

K 2
3 ¡ m ;0

K 2
m ;0

¹2 ¡ .¹2 C 1/

¶

m D 1; 2; j D 0; 1; 2; : : : ; N ; 81 D S1 C Á1;0 ¡ Á2;0 (18)

and, for g < ¡1, we must replace cosh.µ/ with ¡cosh.µ / and
sinh. jµ/ with ¡sinh. jµ/ in Eqs. (18). One can see that when
jgj ¸ 1, Eqs. (18) will generally produce unbounded growing so-
lutions. However, we will see in the next section that jgj ¸ 1 does
not always produce unbounded yawing motion. Whenever jgj < 1
is stable and bounded, yawing motion occurs. Cooper and Fansler2

observedthat the magnitudesof thesemodes lay in an envelopewith
midpointaveragesgenerallynot equal to zero.This can be explained
by averaging Eqs. (17) over N yaw cards, and we will � nd that
­­­­

Km ; j

Km;0

­­­­
2

¡ 1 D
¡1

4N sin3.µ /

£

2

664

cm[sin.2N µ/ ¡ N sin.2µ/]

C dm fsin[.2N C 1/µ ] ¡ .2N C 1/ sin.µ/g
C sin[.2N ¡ 1/µ ] C sin.3µ/ ¡ 2.N C 1/ sin.µ/

C 4.N C 1/ sin3.µ/

3

775 (19)

In the limiting case for large N , the right-hand side of Eq. (19) be-
comes [dm C 1 C cm cos.µ/ ¡ 2 sin2.µ/]=[2 sin2.µ/]. As ° varies so
that the stabilityboundary is approached,that is, as µ ! 0, this aver-
age diverges.Equations (16–19) indicate that ignoring the moments
induced on a projectile when colliding with yaw cards may cause
noticeableerrors in the data reductionproceduresused in extracting
� ight coef� cients.

Yaw Growth (z g z >– 1)
Whenever jgj ¸ 1, the angle ° that determines the magnitude of

g D ¹ sin.° =2/ C cos.° =2/ must satisfy

2n¼ · ° · 2n¼ C 4 tan¡1.¹/

n 2 Z e for g ¸ 1

n 2 Z o for g · ¡1

Fig. 3 Phase encounter value vs card index number.

Unless speci� ed differently, we will let n D 0 for g ¸ 1 and n D 1
for g · ¡1 because the general jgj ¸ 1 requires simply adding an
integer multiple of 4¼ to these values of ° . The usual approxi-
mate launch condition for an unworn gun, that is, K1;0 D K2;0, will
also be assumed. If we further assume that ¹ ¿ 1, then the second

equationof Eqs. (15) shows that the usualgyroscopicstabilityfactor
Sg , given by Murphy,3 can be written, with aid from Eqs. (2), as
Sg D P2=4.M C Mc¿c=dc/ · 1 for an unstable projectile. McCoy,1

whose analysis is based on an approximation using an averaging
method, also found this condition was true, but makes no reference
to the size of ¹.

Substituting µ ! iµ into Eqs. (16) and letting j become large
give the limiting equation

·m ; j C 1 D ·m; j expf[.¡1/m i° =2] C µg; m D 1; 2 (20)

Equation (20) says that the epicyclical phase jump 1Á approaches
the phase interval .¡1/m ° =2 when j becomes large and we now
have lim. OÁ j C 1 ¡ OÁ j / ! ¡ ° C n¼; n 2 Z . Placing this limit into
the second equationof Eqs. (10) tells us that lim.8 j C 1/ approaches
a constantwhenever the cards are spaced uniformly.Figure 3 shows
an example of this limiting value as a function of the yaw card
number j .

The next consideration is a case where the mode magnitudes
decrease exponentially for suf� ciently large j . One example of this
is to take 0 · ° =2 · tan¡1.¹/, which makes g ¸ 1. Then, setting the
coef� cient of e2 jµ in Eq. (18) equal to zero, that is,

e¡µ sin.° =2 ¡ 81/ C sin.81/ ¡ ¹ cos.81/ ¡ ¹ D 0

and then solving for 81 gives

tan

³
81

2

´
D

g¹ ¡
p

¹2 ¡ g2 C 1p
g2 ¡ 1

C ¹ (21)

Rewriting this expression in terms of g, followed by some straight-
forward but lengthy algebra, we � nally arrive at
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K 2
m; j D K 2

m ;0

¡
g ¡

p
g2 ¡ 1

¢2 j

m D 1; 2; j D 0; 1; 2; : : : ; N (22)

One cansee from the last equationthat themodal magnitudesremain
boundedeven though g ¸ 1. Substitutingthe precedingvaluesof 81

into Eq. (11), rewritten for equal mode magnitudes,and simplifying
reveal

tan.Á1;1 ¡ Á1;0/ D ¡
¡
g
p

¹2 ¡ g2 C 1 ¡ ¹
¢¯

.¹2 ¡ g2/

tan.Á2;1 ¡ Á2;0/ D ¡tan.Á1;1 ¡ Á1;0/ (23)

Now, solving Eqs. (23) for Á1;1 and Á2;1 allows us to calculate 82,
which, when placed into Eq. (11), gives Á1;2 and Á2;2. This proce-
dure can be repeated for consecutivevaluesof j so that Á1; j and Á2; j

j D 3; 4, 5, : : : ; N can be calculated. Alternatively, if we consider
setting the coef� cient of e¡ j µ equal to zero, we will � nd exponen-
tially growing solutions given by

tan

³
81

2

´
D

p
¹2 ¡ g2 C 1 C g¹p

g2 ¡ 1
C ¹

K 2
m; j D K 2

m;0

¡
g C

p
g2 ¡ 1

¢2 j

m D 1; 2; j D 0; 1; 2; : : : ; N

with Eq. (23) remaining unchanged.One can see that similar calcu-
lations are feasible for any ° =2 that causes jgj ¸ 1.

Further Illustrations
An example illustrating predicted results for the 7.62-mm pro-

jectile discussed previouslyby McCoy1 and Cooper and Fansler2 is
examined. Shown in Fig. 4 is a parametric plot of ® and ¯ , where
the nondimensionaldistance s is used as the parameter. For clarity,
the effects of having no yaw card in� uence, ¹ D 0, are compared to
a typical sequence of six evenly spaced cards in which ¹ D 0:1.

The fast and the slow modes initially have equal magnitudes, ap-
proximating the initial conditions for many projectiles.When start-
ing at the origin, the curves coincide for the � rst phase distance S1.

Fig. 4 Comparisons of stable epicyclic motion for the 7.62-mm
projectile.

Fig. 5 Unstable epiclic motion for a 7.62-mm projectile.

This makes 81 D 1:65 C ¼ , where one can see a discontinuityin the
derivatives of ® and ¯ caused by the projectile’s interaction with
the � rst yaw card. Similar discontinuitiesoccur for each of the fol-
lowing yaw cards, accountingfor the discrepanciesbetween the two
parametric curves. After each impact, the curves alternate between
dashed and solid lines to help distinguish yaw card positions.

Figure 5 shows the unstableepicyclicalmotion when the spacing
between adjacent cards is such that the value of g is a maximum,
that is, when g D

p
.1 C ¹2/. This parametric plot also has alter-

nate dashed and solid curves that indicate where the projectile and
card impacts occur. Because g ¸ 1, we see the modal magnitudes
increase after each impact. In this example, the starting conditions
are OÁ0 D ¼ and the � rst card is positionedat 81 D 3¼ C 2 tan¡1.¹/.
Again,we haveassumedunwornboreconditionsso that K1;0 D K2;0.
As pointed out before, ignoring the moments caused by the yaw
cards may result in nonnegligibleerrors. Figure 5 could falsely in-
dicate an increasing yaw magnitude due to aerodynamic forces if
the projectile and card collisions are ignored.

Conclusions
The disturbances imparted to the yawing motion of a free-� ight

projectile caused by collisions with yaw cards have been shown,
at least in some cases, to be nonnegligible. Extending the linear
theory of Murphy3 to include projectile and card impacts results
in simple expressions describing these disturbances.Considering a
single card impact, under the assumption that the mode magnitudes
are equal, leads to simple expressions predicting that the phase of
one mode advanceswhereas the phaseof the other mode is retarded.
When the yaw cards are uniformly spaced, the model leads to both
growing and nongrowing yawing motion. Furthermore, a projectile
traversing a uniformly spaced yaw card range can exhibit card-
induced modal changes so that the measured overturning moment
will be signi� cantly different from the same measurement found in
a nonintrusive spark range. These differences are most likely to be
observed for small arm projectiles. Therefore, if a yaw card range
is going to be used for extracting aerodynamic coef� cients, one
can consider the results given in this paper to help characterizeand
understand the yaw card induced disturbances.
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