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Influence of Yaw Cards on the Yaw Growth
of Spin-Stabilized Projectiles

G. R. Cooper*
U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005-5066

A simple extension of the standard linear theory, describing the free-flight motion of a projectile, now includes
the influences due to the projectile impacting yaw cards. The card impacts are modeled as ideal delta function
impulses that are shown to alter the usual yawing motion of a spin-stabilized projectile passing through a yaw card
range. Card-induced changes in the complex-valued yaw modes are expressed as difference equations. Known
analytic solutions to these difference equations show how card impacts influence a projectile’s yawing motion by
relating simple expressions of the card spacing to a parameter describing the material density of the yaw cards.
These solutions also reveal that both bounded and unbounded yaw mode magnitudes can be induced by yaw card
impacts. Furthermore, the model shows that moments caused by repeated projectile and card interactions should
not always be treated as negligible. Examples of these results for a typical small arms projectile (7.62 mm) launched

from an unworn gun tube are presented.

Nomenclature
A = referencearea, md* /4
Cy, = aerodynamic momentoverturning coefficient
Cy,. = overturning moment coefficient for card material
d = projectile reference diameter
d, = nondimensionalcard spacing when cards
are uniformly spaced
g = card stability constant, u sin(y /2) + cos(y /2)
1, = nondimensionalcard overturning impulse,
(IO('Adztr'CMot)/(ZIy)
1, = axial moment of inertia
y transverse moment of inertia
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J = card index value,0, 1,2, ...

K, j = average mode magnitude

K,; = fastyaw mode magnitude before transiting the jth
card

K,; = slowyaw mode magnitude before transiting the jth
card

M = nondimensionalizedoverturning moment,
(pAd*Cyy)/(21)

M. = nondimensionalizedcard overturning moment,
(IO('Ad:sCMm )/(ZIy)

m = mode number, 1 or2

m = projectile mass

N = maximum number of cards

p = axial spin rate

q = real number

S, = gyroscopicstability factor

S;+1 = phasevalue for jth+ 1 card, (¢; — @5)s;

s = nondimensionaltrajectory arc length (calibers), that is,
Vi/d

s = sat jthcard

t = time

Vv = magnitude of velocity

Z = setof integers

A = set of even integers

z° = setof odd integers

o = angle of attack

B = angle of sideslip
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[a, Bl = af* F a*B commutator and anticommutator
y = phase interval between uniformly spaced cards,
Sj+1-5;
AK = modal magnitude change
A¢ = epicyclical phase jump
Ky = complex amplitude of fast mode, K ; exp(i¢; ;)
K2, j = complex amplitude of slow mode, K> ; exp(i¢s, ;)
% = impact stability parameter, I. /(¢] — ¢3),
& = complex yaw, sin 8 +i sina
0 = air density
Oe = card material density
T. = card thickness
®;,1 = phaseencounterangle
op = (¢ —¢2))
o1, = fast mode phase angle, between j — 1 and jth card
02, = slow mode phase angle, between j — 1 and jth card
f = fast mode angular rate
3 = slow mode angular rate

-~
Il

d()/ds
complex conjugate
Il = absolute value |x +iy| = /(x> + y?)

Introduction

AW card arraysplacedina firingrangehave beenused to obtain

flight data when spark ranges are not available or when spark
range operations are possibly compromised. A projectile impacting
a yaw card produces an elongated hole depicting the silhouette of
this projectile normal to the line of fire. Comparing the dimensions
of this hole to the dimensions of the projectile plus measuring the
hole orientation,relativeto some fixed axis, enablesone to determine
the pitch and yaw angles of this projectile at that card’s location.
The interactions of the projectile with yaw cards cause the reduced
flight coefficients to differ from the values found from nonintru-
sive photographic measurements taken in a spark range. McCoy'
addressed this problem using Fourier analysis along with an aver-
aging procedure to account for these discrepancies. His conclusion
was that the small perturbations generated by yaw card interactions
gave an additional average phase shift to the usual projectile yawing
motion. The projectile flight data were then corrected to account for
this phase shift.

Cooper and Fansler” modeled the projectile and card interaction
using Dirac delta functions. This approach eliminated the averaging
technique. They calculated the fast and slow mode changesin mag-
nitude, as well as the correspondingphase changes at each card. Be-
causethe materials used in manufacturingyaw cards are dense when
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compared to air density, it is reasonable to expect that sufficiently
decreasingyaw card spacing or using thick yaw cards might resultin
projectiledestabilization.In particular, marginally stable projectiles
would require careful design of the range to avoid inducing insta-
bility. McCoy' asserted that the usual stability criterion, extended
with his correction due to yaw cards, was still valid. Cooper and
Fansler® validated this assertion, provided that a stability parameter
arising from yaw card interaction is assumed small.

The currentapproachis an analyticalcontinuationof the computer
simulations given by Cooperand Fansler.> As before, interactionsof
the projectile with yaw cards are treated as ideal impulses. However,
in the present study, both uniform and nonuniform card spacing are
examined. This approach produces first- and second-order differ-
ence equations with known solutions. These closed-form solutions
yield an additional stability criterion for projectiles flying through
a uniformly spaced yaw card range. Both stable and unstable yaw
modes are examined, and closed-form expressions for modal mag-
nitudes, plus the correspondingphase angles, are given as functions
of the number of yaw cards. These analytical results also explain
the computer simulated results given previously?

Governing Equation of Motion
The differential equation of pitching and yawing motion for a
spinning projectile, acted on by a linear pitching moment and with
damping processes neglected, is, in Murphy’s® notation,

£ —iPE — ME =0 (1)

Solutions to Eq. (1) are written according to Murphy® as epicyclic
motion

¢ = Kiexp(ig) +igys) + Krexp(igy +ig;s)

¢, =(P+VP>—4M)/2, m=1,2

where K| and K, are magnitudes of the two modes with initial
phases ¢ and ¢, having angular rates ¢ and ¢,. Because Eq. (1)
is the equation of motion of a projectile flying through air, modi-
fications must be introduced to account for the denser yaw cards.
Following Cooper and Fansler,” a nondimensionalcard-overturning
moment M, along with the correspondingimpulse /. are defined as
MC = ()Or'Ad3/21y)CMtl('v I(' = ()O('Adzt('/ZIy)CMar (2)
for the card material density p,.

Equation (1) will now be modified to account for the yaw card
interactions. We will assume that each yaw card transmits an over-
turning moment to the projectile. This moment is modeled as an
ideal Dirac delta functionimpulse, §(s — s;), located at the jth card
with position s;. Using the pitching moment impulse /., we replace
M with

M1y 5 —s))

j=1

changing the governing Eq. (1) to

g”—in’—|:M+I(.Z<S(s—sj):|.§=0 3)

j=1

The modal solution of Eq. (3) between the jth and jth+ 1 cards
can be written by extending Murphy’s notation’®

¢ =K, jexp(igr; +igs) + Ky jexp(igy; +ids)

j=0,1,...,N

¢, =(P+VP>—4M)/2, m=1,2 )
where K, ; and K, ; are the card-modified fast and slow modal
magnitudes having ¢; ; and ¢, ; as card-modified fast and slow
initial phase angles. The respective phase angular rates ¢| and ¢,
are unchangedby the projectileand card interaction. Note that j =0

means that the projectile has not reached the first yaw card and that
Eqs. (4) describe the usual epicycloid motion associated with free-
flight projectiles moving between adjacent cards.

For convenience, the modes are written in polar form as

m=1,2, j=0,1,2,....,N (5

Km j =K, €9,
transforming the first equation in Egs. (4) to
&= Klyje"");“' + szje"");“' (6)
Boundary conditions at each card for Eq. (3) are given by
§(5j+) :é(sj)s %-/(SjJr)_%-/(Sj):I(-s(sj) )

that show the usual discontinuous derivative caused by delta funct-
ions.

Modal Parameters Before and After

a Single Card Interaction
Here we will examine single card impacts that may or may not
requireuniformyaw card spacing. The followingsection will take up
the discussion where the cards are constrained to uniform spacing.
Consideraprojectileimpacting the jth + 1 card. SubstitutingEq. (6)
into Egs. (7), then solving for | ;; ; and k5 ; 4 in terms of k; ; and
Kk j, results in a coupled system of difference equations for the

complex valued , ; and «; ;
Kijp1 =K1 — ipky j — ipky je™ S+

. . S
Ko jp1 =Ko+ ipky; +ipk jeoi+! ®)

Defining the parameters p1 and S; as’

W= 1)) — ¢ =1./V P> —4M
Sj = (@ —d))s; =V P? —4Ms;, ©)
and manipulating Egs. (8), using the usual trigonometric reduction

formulas, shows that the modal magnitudes before and after a card
impact are related as

2 2
3—m,j 3—m,j
— 1= -2p—2Y sin(d: + 1+ ==L
" Ko sin(®;41) + u Ko

Km,j+1
K,

2J

K3—m,j
+2 cos(P; 1) |, m=1, 2
K, ;
Dy =811+ ¢ ¢ =01~ ¢, (10)

Here we introduce the angle &;,;, which is called the
phase encounter angle at the jth+1 yaw card. Applying
(K, j+ 15 Km 1= /[Km, j + 15 Km.; 1+ to Eqs. (8), rewritten in polar form,
yields an expression for the changes in the modal phase angles
O, j+1— Pm,j,m=1, 2, caused by the projectile impacting the
jth+1 card:

(s 11— ) = (=11 i SOy ) B I
"It " Ks_ i Sin(®; 4 )p — K j

m=1,2 (11)
Subtracting the two modal equations found in Egs. (10) leads to an
invariant relation for the two modes:
Klz,j+l - K22,j+1 = Klz,j - K22,j
or
2 2 2 2
Kl,j - Kz,j =Ki,— K3,

showing that the modal magnitudes lie along a hyperbola.
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Fig. 1 Normalized phase change and normalized modal magnitude.

We define the epicyclical phase jump A¢ and the modal magni-
tude change A K, attributableto a single impact at the jth 4 1 card,
as

AD = D1 = P,

for m=1, 2,

AK = |Km,j+1/Km,j| -1
j=01,2...,N (12)

Whenever K, ; = K,;, Eq. (11) tells us that ¢; ;1 — ¢ ; +
@2 41— ¢rj=nm, n € Z .Because u is usually small, physi-
cal arguments demand that ¢,, ;| — ¢, ; — 0 as u — 0 for both
m =1, 2. We, therefore, see that the changes in the two modal
phase angles are centered about nm, so that ¢, ;| —¢, ; —>
—(¢2,j+1 — ¢»,;) +nm. Experience has shown that most often
n =0, which means that the two modes are rotated equally but in
opposite directions. Figure 1 shows A¢ and AK, each normalized
by their respective peak values, for a case wherein the two modal
magnitudes are equal

A¢p  tan {[pcos(P; 1) + pl/[psin(®; ) — 1)

A(bpeak tan™! [2#/(#2 — 1]

AK  p—ypr+1 sin[®;, — tan"! ()]
[;Lsignum(d),-+1 —77)"‘\/1’«2"'1]

AI(peak
as functionsof ®; ;.

Using the first equation of Egs. (10), we now find the ex-
treme values for maximum growth and maximum decay for the
cases where the gun bore is assumed to be unworn, that is, the
modes have equal magnitudes. Straightforward analysis tells us that
cos[®; | — tan~!(1)]= 0. Now, solving for the phase encounter
angle ®; , |, we find that ®; , | = tan~"' () £ (nx)/2, n € Z°. Sub-
stituting this value of ®; | back into the first of Egs. (10), for both
m =1, 2, followed by some simplification, gives us

Ko js1/Kn)? = 1=E2puyp® + 1+ 247 for Kio=Kso
This last expression is a first-order linear difference equation that
is easily solved {K,, ;=[u=£ /(1> + 1DV K, o} to produce the
maximum growth and decay rates shown in Fig. 2. The cor-
responding phase changes come from Eq. (11) and reveal that
tan(@uj +1 — Gm ;) = (—1)" u for m =1, 2. This can be solved for
®m.j+1 so thatone will find that ¢ ; = ¢ + j{tan™'[20 /(> — D]+
nm}, n € Z. Because we already have the corresponding values of
®; ;, wecanuse the secondequationof Eqs. (10) to find the needed
card phase value S;;; j=0,1,2,... by rememberingthat S; is the
phase value of the first yaw card. Notice thatif n and 7 are constant,
then the card spacing is uniform.

A similar analysis for both modes equal in magnitude so
that AK =0 leads to sin[®; | — tan™'(u)] = p/+/(1* + 1). Now,
solving for ®; , ;, we find that

®;,, =—2cot (u) £mn, m=1,2, nez’
Placing this resultinto Eq. (11) tells us that

¢, =do+ jltan™ [Au(u® — /(' —6p> + D1 +an}, i€z

A Max. Growth
U=0.1 K;=K;, @ Max. Decay
> A
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Fig. 2 Growth and decay of K, j/K,, o as functions of card number.

As before, we can find the card spacing S;+; j=0,1,2,..., and,
once again, if n and 71 are constant, then the card spacing is uni-
form. For completion,also note that A K =0 whenever ;. ; =nm,
n € Z°,implyingthat ¢,, ; | — ¢,, ; =nm, n € Z for any value of 1
whenm =1,2and j=0,1,2,....

Difference Equations for Uniform Yaw Card Spacing

Yaw card rangesusually comprise a series of equally spaced cards
to facilitate extraction of the projectile’s flight coefficients. For this
situation, we rewrite the coupled Egs. (8) as uncoupledsecond-order
difference equations:

Kij+2 — 2834”2'(1,,41 +6’7iy'€1,j =0
Ko s — 287Ky i+ €Ky =0
y=S8j41 =5
g = wsin(y/2) +cos(y/2) (13)

Introducing «,, ;= Q. ; (e V"2 m=1, 2 and j=0, 1, 2,
..., N transforms Eqs. (13) to

Omjr2—280mj+1+ Om;=0, m=1,2 (14)
in which g is defined as
g = cos(0) for
g = cosh(9) for g>1

g = —cosh(d) for g <-1 (15)

Using the identities

cos[0(q +2)] =2cos(@) cos[f(g + 1)] — cos(qgh)

sin[0(qg + 2)] = 2 cos(@) sin[f (g + 1)] — sin(g6)

for any real ¢, one can find solutions to Eq. (14) for |g| <1.
Including the initial conditions «,, o and «,, | =k, o[(—1)"ipn +
11+ (—=1)"ik3_, 0 for m=1, 2, the two complex-valued modal
amplitudes described by Egs. (13) are readily obtained

expl=iy(j = 1)/2] T
Kyj = sin—(G){[Kl‘O(l —ip) —ipkyge”"® ]Sln(ﬂ)

— k10" sin[(j — 1)O]}

iy(j—1)/2 )
Ko = W{[Qo(l +in) + i;uclyoe’s'] sin(j6)

—ka0¢"? sin[(j — 1)01} (16)

The correspondingsolutions for g > 1 can be obtainedby 6 — i6 in
Egs. (16). Solutions for g < —1 are found by multiplying the right-
hand sides of Egs. (16) by (—1)/ and then replacing sin(j6) with
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—sin(j0) followed by & — i6. Manipulating Egs. (16) for the two
modal magnitudes, one will get

2
K .
(#) 1=
Km,O

sin(j0) sin[(j + DO]c,+ sin®(jO)d,, + sin’[(j — O] — sin®(9)
sin®(0)

K37m,0 .
Cp = X usin(y /2 — @) + cos(9)

m,0

2K37m,0 .
d, =— |:K—;L[s1n(<bl) — pncos(Py)]
m,0

2

K‘S—mO 2 2
———u" = (u"+1) a7
Koo

wherem=1or2, j=0,1,2,..., N and &, =S, 4+ ¢1.0 — ¢20.
Equivalently, the modal magnitudes when g > 1 yields

p=1 si=y=2tan" (1) 1,0-020=T0

Jessecessoceetcececsecte
5 - ’...

3 T T ? ; T T T
0 5 10 15 20 25 30 35 40
Card Number j

Fig. 3 Phase encounter value vs card index number.

Unless specified differently, we will let n =0 for g>1 and n=1
for g < —1 because the general |g| > 1 requires simply adding an
integer multiple of 4 to these values of y. The usual approxi-
mate launch condition for an unworn gun, thatis, K, o = K5 o, will
also be assumed. If we further assume that u < 1, then the second

Km,O

(Km,j )2 o sinh(j@) sinh[(j+1)8]c,, + sinh®(j0)d,, + sinh*[(j —1)0]— sinh’ (6)

sinh?(0)

K37m,0 .
Cp =2 X usin(y /2 — @) + cosh(d)
0

m

K

m,0

2

K K
d, = —[Mu[sin@l) — jcos(®))] — =282 — (1 + 1)}

m=1, 2,

and, for g <—1, we must replace cosh(f) with —cosh(f) and
sinh(j#) with —sinh(j6) in Eqgs. (18). One can see that when
lgl > 1, Egs. (18) will generally produce unbounded growing so-
lutions. However, we will see in the next section that |g| > 1 does
not always produce unbounded yawing motion. Whenever |g| < 1
is stable and bounded, yawing motion occurs. Cooper and Fansler?
observedthat the magnitudesof these modes lay in an envelope with
midpointaverages generallynotequal to zero. This can be explained
by averaging Egs. (17) over N yaw cards, and we will find that

2 -1

T ANsin ()

¢, [sin(2NO) — N sin(260)]
+d, {sin[@QN + 1)6] — 2N + 1) sin(6)}
+sin[(2N — 1)0] + sin(30) — 2(N + 1) sin(6)
+4(N + 1)sin® ()

In the limiting case for large N, the right-hand side of Eq. (19) be-
comes [d,, + 1 +¢,, cos(0) — 2 sin2(9)]/[2 sin’(9)]. As y varies so
that the stability boundary is approached, that is, as 6 — 0, this aver-
age diverges. Equations (16-19) indicate thatignoring the moments
induced on a projectile when colliding with yaw cards may cause
noticeableerrors in the datareduction procedures used in extracting
flight coefficients.

(19)

Yaw Growth (|g| >1)

Whenever |g| > 1, the angle y that determines the magnitude of
g = pusin(y /2) + cos(y /2) must satisfy

2nmw <y <2nmw +4tan”'(u)
neZz’ for g>1

neZzZ’ for

j=0,1,2,...,N,

2
Km,O

D =S8 +di1o— P20 (18)

equationof Egs. (15) shows that the usual gyroscopicstability factor
S,, given by Murphy,® can be written, with aid from Egs. (2), as
S, =P?*/4(M + M../d.) <1 for an unstable projectile. McCoy,'
whose analysis is based on an approximation using an averaging
method, also found this condition was true, but makes no reference
to the size of x.

Substituting  — i€ into Egs. (16) and letting j become large
give the limiting equation

Km,j+1 = ko, j eXp{l(=1)"iy /2] + 6}, m=12 (20

Equation (20) says that the epicyclical phase jump A¢ approaches
the phase interval (—1)"y /2 when j becomes large and we now
have lim(¢; 1 —¢;) - — y +nm, n € Z. Placing this limit into
the second equation of Eqgs. (10) tells us thatlim(®; ; ) approaches
a constant whenever the cards are spaced uniformly. Figure 3 shows
an example of this limiting value as a function of the yaw card
number j.

The next consideration is a case where the mode magnitudes
decrease exponentially for sufficiently large j. One example of this
istotake0 < y/2 < tan™' (1), which makes g > 1. Then, setting the
coefficient of 2/ in Eq. (18) equal to zero, that is,

e ?sin(y /2 — @) + sin(®;) — pucos(®;) —pu =0

and then solving for @, gives

. (d>1> g —+/n?—g2+1
an| — | =
2 /gz_l

Rewriting this expressionin terms of g, followed by some straight-
forward but lengthy algebra, we finally arrive at

+u 21
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K2, =K., (s Ve -1)"

m=1, 2, j=0,1,2,....N (22)
One cansee from the lastequation that the modal magnitudesremain
boundedeven though g > 1. Substituting the preceding values of @,
into Eq. (11), rewritten for equal mode magnitudes, and simplifying
reveal

tan(@, — ¢io) = —(gv/n2 — g2+ 1-n) /(> — g%
tan(g,, | — ¢p0) = —tan(¢;; — ¢10) (23)

Now, solving Egs. (23) for ¢, ; and ¢, allows us to calculate ®,,
which, when placed into Eq. (11), gives ¢, , and ¢, ,. This proce-
dure can be repeated for consecutive values of j sothat¢; ; and ¢, ;
j=3,4,5,..., N can be calculated. Alternatively, if we consider
setting the coefficient of ¢=/? equal to zero, we will find exponen-
tially growing solutions given by

o 2-g2+ 1+
tan(Tl> _ Vg g

g -1

K2, =K, (s++/e2—1)”

m=1,2, j=0,1,2,....,N
with Eq. (23) remaining unchanged. One can see that similar calcu-
lations are feasible for any y /2 that causes |g| > 1.

Further Illustrations

An example illustrating predicted results for the 7.62-mm pro-
jectile discussed previously by McCoy' and Cooper and Fansler” is
examined. Shown in Fig. 4 is a parametric plot of « and 8, where
the nondimensional distance s is used as the parameter. For clarity,
the effects of having no yaw card influence, u = 0, are compared to
a typical sequence of six evenly spaced cards in which © =0.1.

The fast and the slow modes initially have equal magnitudes, ap-
proximating the initial conditions for many projectiles. When start-
ing at the origin, the curves coincide for the first phase distance S;.

Kyo=Kzo p=0.1 yv=1.65 0¢10-020=1 ®,=1.65+n

alKyg
5 4
= 7 = : B/Ki0
23 =ZH.8 -1.3 O 3 0. 0.8= 1.3 1.8
= = 0.5
= = =10

Fig. 4 Comparisons of stable epicyclic motion for the 7.62-mm
projectile.

Ky 0=Koo v=2m+2tan™ (1) ¢ g-tpo=rc y=3m+2tan’ ()

-7.0 BiK10

R0
O

Fig. 5 Unstable epiclic motion for a 7.62-mm projectile.

This makes ®; = 1.65 + &, where one can see a discontinuityin the
derivatives of @ and B caused by the projectile’s interaction with
the first yaw card. Similar discontinuities occur for each of the fol-
lowing yaw cards, accounting for the discrepanciesbetween the two
parametric curves. After each impact, the curves alternate between
dashed and solid lines to help distinguish yaw card positions.

Figure 5 shows the unstable epicyclical motion when the spacing
between adjacent cards is such that the value of g is a maximum,
that is, when g = /(1 + p?). This parametric plot also has alter-
nate dashed and solid curves that indicate where the projectile and
card impacts occur. Because g > 1, we see the modal magnitudes
increase after each impact. In this example, the starting conditions
are qgo = 7 and the first card is positionedat ®; = 37 +2tan~' ().
Again, we have assumedunwornbore conditionsso that K| y = K g.
As pointed out before, ignoring the moments caused by the yaw
cards may result in nonnegligibleerrors. Figure 5 could falsely in-
dicate an increasing yaw magnitude due to aerodynamic forces if
the projectile and card collisions are ignored.

Conclusions

The disturbances imparted to the yawing motion of a free-flight
projectile caused by collisions with yaw cards have been shown,
at least in some cases, to be nonnegligible. Extending the linear
theory of Murphy? to include projectile and card impacts results
in simple expressions describing these disturbances. Considering a
single card impact, under the assumption that the mode magnitudes
are equal, leads to simple expressions predicting that the phase of
one mode advances whereas the phase of the other mode is retarded.
When the yaw cards are uniformly spaced, the model leads to both
growing and nongrowing yawing motion. Furthermore, a projectile
traversing a uniformly spaced yaw card range can exhibit card-
induced modal changes so that the measured overturning moment
will be significantly different from the same measurement found in
a nonintrusive spark range. These differences are most likely to be
observed for small arm projectiles. Therefore, if a yaw card range
is going to be used for extracting aerodynamic coefficients, one
can consider the results given in this paper to help characterize and
understand the yaw card induced disturbances.
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